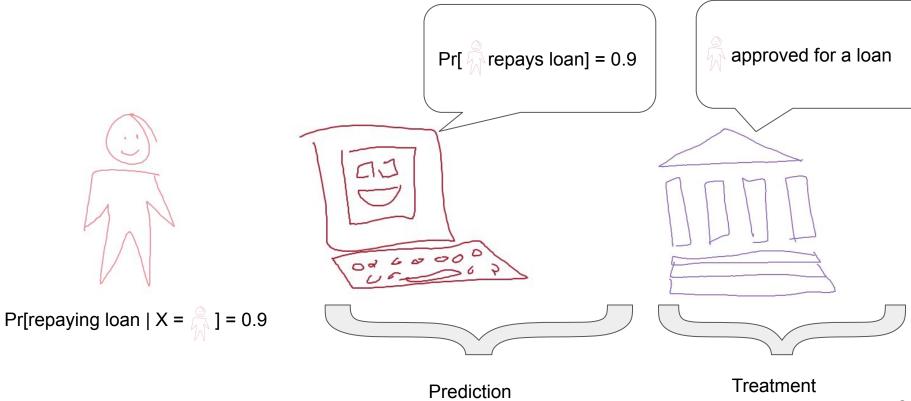
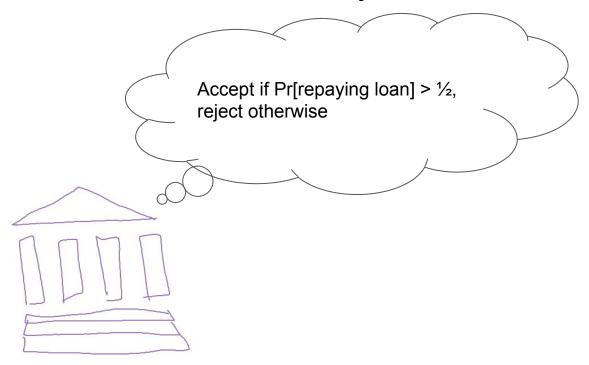
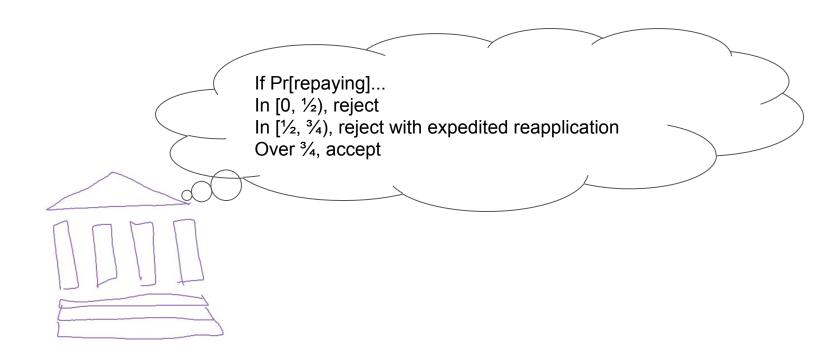
Visualizing our values: using property elicitation to understand the consequences of constraints

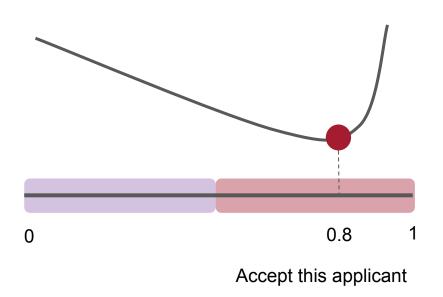
Make predictions about people all the time







Design loss functions to elicit such statistics



Set of outcomes Y	Y = {repay, default}
True p \in ∆ _Y	p = Pr[repay] = 0.8
Set of predictions U	U = [0,1]
Set of treatments T	T = {award loan, reject loan}

What happens when we think about the population: adding regularizers

When treatments are individual, simply consider each treatment individually

$$\min_{\vec{u}} L(\vec{u}; \vec{p}) := \frac{1}{m} \sum_{i=1}^{m} L(u_i, p_i)$$

Fairness concerns often merit adding regularizers to losses

$$\min_{\vec{u}} L^{\lambda,R}(\vec{u}; \vec{s}; \vec{p}) := (1 - \lambda) \frac{1}{m} \sum_{i=1}^{m} L(u_i, p_i) + \lambda R(\vec{u}; \vec{s}; \vec{p})$$

Now we need to consider population as a whole, and cannot abstract decisions to the individual level

Property elicitation

A loss L <u>elicits</u> a property Γ if, for all $p \in \Delta^m_{\nu}$,

$$\Gamma(\vec{p}) = \arg\min_{\vec{u}} L(\vec{u}; \vec{p})$$

Since L is additive in u, this decomposes into $\{\Gamma(p_i)\}_i$

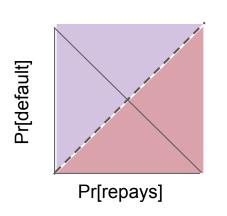
Fix s. A regularized loss elicits a regularized property Θ if, for all p in $\Delta^m_{\ \mathcal{Y}_{,}}$

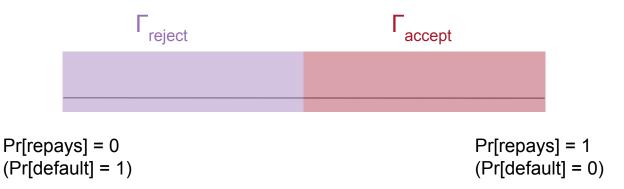
$$\Theta(\vec{p}) = \arg\min_{\vec{u}} L^{\lambda,R}(\vec{u}; \vec{s}; \vec{p})$$

Level sets of properties

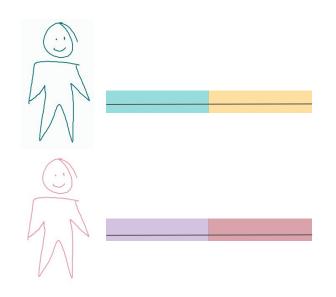
Predictions don't have to be perfect, so long as treatments are correct

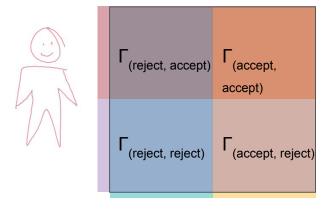
$$\Gamma_t = \{ \vec{p} \in \Delta_{\mathcal{Y}}^m : t \in \Gamma(\vec{p}) \}$$





Example visualization: 2 agents, binary classification

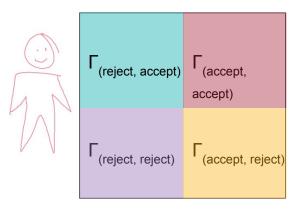


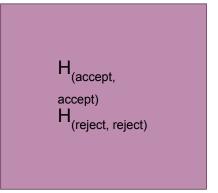


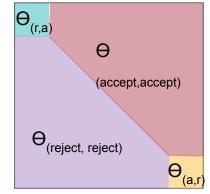
When do regularizers change the original property?

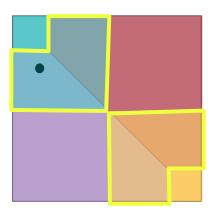
Theorem (informal): Fix $\lambda \in (0,1)$. Let L elicit Γ, L^{R, λ} elicit Θ, and R (which is nonconstant) elicit H. Then $\Gamma = \Theta$ if and only if $H = \Gamma$.

Proof by picture: Counterexample with Demographic Parity



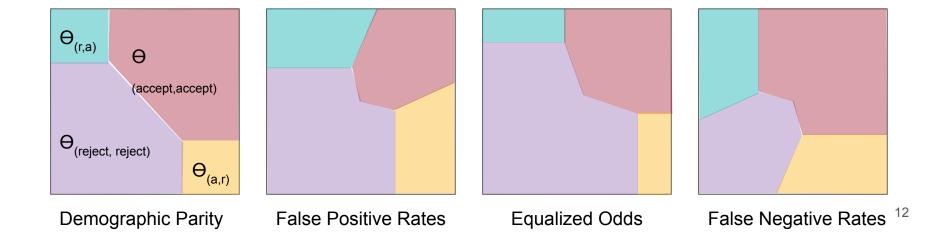




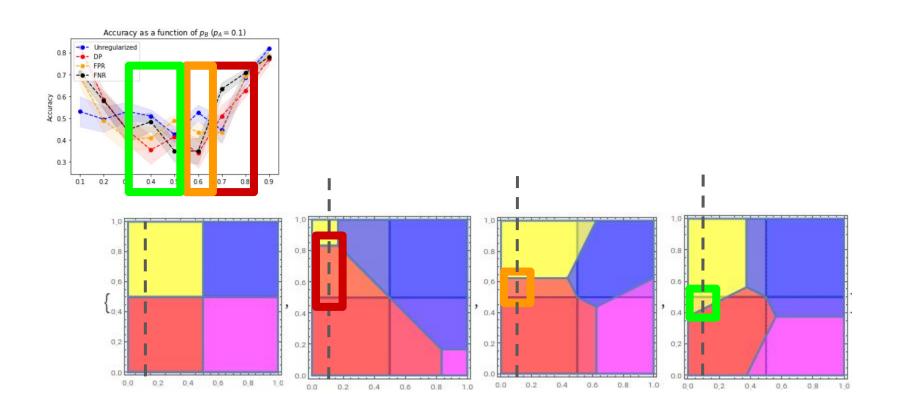


Corollary: common group fairness metrics change it up

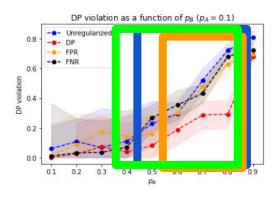
- Most group fairness regularizers change the property
 - They are not additive, so regardless of Γ
- Notable exception: calibration
 - Implies changes imposed by calibration constraints are a result of expressiveness of the model

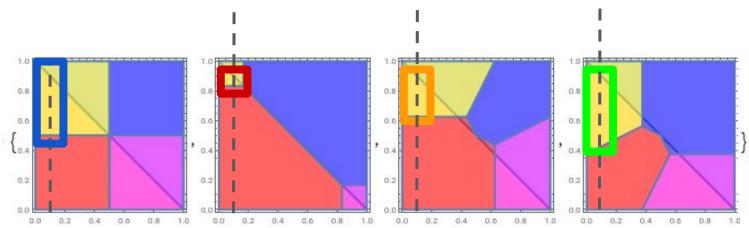


How decisions change as we go through distribution space



Fairness violations when regularized





In summary, come chat!

- Use high-dimensional property elicitation to study the impacts of different regularizers
 - Examples: group fairness constraints
- Can be used to explain performance gaps and translation across different fairness regularizers

Interested in collaborating, questions?

Email: jessie@seas.harvard.edu

Online: www.jessiefin.com

Experimental results

